
11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 1

www.kenfreed1.com

Manufacturing and Embedded Tool Software
Project Management Guide

11/22/91

CONTENTS

INTRODUCTION ... 2
Scope.. 2

OUR PROGRAMMING ENVIRONMENT.. 3
Project Categories: ... 3
How Manufacutring and Tool Software Differs from other IS Departments.. 3
How Much Should a Project be Documented? .. 5
Commonly Heard Pros and Cons of Project Management... 6

SOME SOFTWARE ENGINEERING CONCEPTS (relevant to our area) .. 7
Requirements Gathering and Design ... 7
Multi Programmer Projects .. 8
Estimates .. 8
Project Tracking... 12

LIFE CYCLE PHASES ... 13
Phase 0 (Analysis): Proposal and Requirements.. 14
Phase 1: Definition and Design.. 15
Phase 2: Estimates and Scheduling .. 18
Phase 3: Development.. 19
Phase 4: Debug .. 20
Phase 5: Project Closeout... 22

SPECIAL PROBLEMS ... 24
Not Enough Time to Work on the Project.. 24
Changing Requirements ... 24
Hardware Delays.. 25
Post Installation Support .. 25
Managing Vendor Coders .. 25

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 2

www.kenfreed1.com

INTRODUCTION

This document outlines how to manage manufacturing and embedded tool control
projects. The goal of project management is to document answers to the following
questions:

1. What requirement(s) is this code going to fulfill?

Do the users agree with this?

2. How much work will it take to put the system in place?
 How long will it take to put the system in place?

Does management agree to staff it?; is the effort justified?

Do the users agree to the cost and schedule?

3. Is the Project on Schedule? Is the Project Within Estimates?

4. Does the code work? Is it maintainable?

Scope

This document does not describe how work is assigned or flows.

Our department develops four types of documentation to accompany software:

Project Management Documentation
Software Internals (Programmer's Guide)
Software Externals (User's Guide)
Disaster Recovery

While some of the topics among these documents overlap, project management
documentation is concerned with commitments, responsibility and schedules.

This document does not replace the common sense which arises from experience.
In this vein, the guidelines spelled out in this document attempt to give the
project leader as much liberty as possible in creating documentation to fulfill
the above goals.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 3

www.kenfreed1.com

OUR PROGRAMMING ENVIRONMENT

Project Categories:

We do three types of projects in our area:

1. Development

A new tool. Some design work is necessary

A major functional upgrade of more than 4 weeks effort to an
existing tool. The design must be fit into an existing framework.

2. Enhancement

A functional upgrade of less than 4 weeks effort to an existing
tool.

3. Maintenance

Work done to maintain the intended function of the code.

e.g.: Fixing a bug that arises due to hardware changes or
lower level computer subsystem changes. Upgrading operating
system software. Updating documentation, disaster recovery.

How Manufacutring and Tool Software Differs from other IS Departments
… as related to what procedures are used

The main considerations in our area (relevant to the volume of project
management documentation)
are:

1. How many programmers will be working on the software?

• Approximately 90% of our projects are staffed by one programmer and one
"backup".

• Approximately 9% of our projects are staffed by 2-3 programmers.
• Approximately 1% of our projects are staffed by more than 3

programmers.

In general, our design and testing documentation is reduced and can be delayed
because we do not have to coordinate multiple programmers.

2. How much effort will a project need?

• Approximately 70% of our effort is spent on projects less than 4 weeks.
• Approximately 25% of our effort is spent on projects 4 weeks to 6

months.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 4

www.kenfreed1.com

• Approximately 5% of our effort is spent on projects 6 months to 2
years.

3. Is the application "glasshouse" or is it dependent on non DP (data
processing) hardware (instrumentation, robotics, vision, etc.)?

Our area is heavily intertwined with engineering, hardware and vendor supplied
subsystems.

Additional complexity is added by heavy dependencies on non DP equipment.
We program in an uncertain environment; e.g. parallel development of
software with the process/technology, changing product requirements.

Approximately 80% of the (types of) programming we do are done by
engineering departments at other sites.

The business case for new projects is done by engineering in the capital
justification for the machine we are supporting.

Schedules are driven by manufacturing and marketing needs.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 5

www.kenfreed1.com

How Much Should a Project be Documented?

There is no one project management methodology that works efficiently for all
types of application software development. The purpose of project management in
our area is to use the minimal effort to set direction, reach agreement and
inform.

An alternative view of project management has the goal of uniformity;
doing a wide variety of projects with uniform procedures and documentation
as insurance against oversights, and to make the project easier to
understand by more people.

Too much project management (i.e.-using "big" project management techniques on
small projects) will waste time on non essential issues.

Not enough will foster "wheel spinning" and misunderstanding.

How much a project should be documented depends on:

1. How ambiguous/open to interpretation the requirements are.

How likely the requirements are to change as you are coding them.

Whether the requirements seem incomplete and are likely to expand to
with follow ons.

RISK:
The less well thought out a project is, the more likely this is to
happen. Try to get the whole thing thought through as a complete
package.

2. How "hard" the need date is.
 Can the project be easily put on the "back burner"?

3. Are the users likely to pressure management about deliverables or
schedule?

In general:

1. Any development project should have accompanying project management
documentation.

2. Small enhancement efforts need less management documentation. Often
the information contained on the request (or engineering change
request) form is sufficient.

3. Maintenance projects (of less than 4 hours OR that gate production) do
not need up front project management documentation.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 6

www.kenfreed1.com

Commonly Heard Pros and Cons of Project Management

Historically, our area has resisted doing project management. To not waste time
on the same arguments, they are summarized here:

Pro Con
Can take the effort that would have
been done documenting and have put it
into the coding.

Unwritten word of mouth requirements
have no validity, are subject to
interpretation, and change as the
project proceeds.

Doing the project management won't help
if the software gates the equipment.
The users only want the thing to work
according to their schedule.

Don't write anything down and you
 are sunk in any case.

You can't write down what to do if the
users don't know what they want.

Writing down what the loose ends are
helps everyone to focus on what's
needed, and agree to the tradeoffs and
options involved.
Maybe the project should be delayed.
Writing down the case is more
convincing.
Knowing what's fixed and what's unsure
 helps you to design the right degree
 of generality into the system.

The users can change the requirements
as the project proceeds.

The programmers can (and should) revise
 the efforts and schedules accordingly.

Management only cares about project
management when things go wrong, when
they are confused, during an audit, or
at appraisal time.
No one checks to make sure projects
management is carried out at all, let
alone in a consistent manner.
Project management has too many
bureaucratic items as insurance against
oversights. Procedures are so thorough
and all-encompassing that relevant
items needed for communicating get
obscured. The time it takes to do
bureaucratic items is trivialized.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 7

www.kenfreed1.com

SOME SOFTWARE ENGINEERING CONCEPTS (relevant to our area)

Requirements Gathering and Design

The leading problem in the structuring of computer software is understanding the
user's application.

Our job is NOT to simply take user requirements as dictated and translate them
into code.

The art of gathering requirements and design is to give the user a system where
minor changes in requirements will be easy to implement without changing the
SCOPE of the project.

This means that the system should have the right degree of "generality".
The "art" of requirements gathering and design is figuring out what is
certain, and what is liable to change. This determines what can be
hardcoded for the specific application, and what functions to implement
(and to what degree) in a more general manner.

None of our projects have solid requirements which remain fixed for a long time.
Software of this type is done by outside vendors and comes with the hardware.

The only completely general system is a programming language itself. Somewhere
the PROGRAMMER has to draw the line and spell out limitations.

Programming personnel should always create requirements documentation
by talking to the users involved and writing down what they want
in a form that can be programmed.

The users do not have a feel for what changes are easy and difficult to
implement in a given design.

A documented set of requirements is a bridge between what the user thinks they
want/will get, and the programming team's methodology of getting a computer(s)
to do it.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 8

www.kenfreed1.com

Multi Programmer Projects

It is false logic that:

If one woman can have a baby in nine months, then nine women can have a
baby in one month.

A project with more than one coder must be PARTITIONABLE. The above project
management methodology will not work because the task is (an extreme case of) a
non partitionable project.

RISK:
As obvious as it sounds, in the effort to make dates it is often
overlooked that there must be a workable way to divide a project up among
coders if more programmers are assigned to bring in the end date.

Estimates

There are two types of estimates for a project:

1. How many person-months EFFORT the project will take to do

2. What TIMESPAN it will take to do the project.

EFFORT can be estimated fairly accurately. TIMESPAN is difficult to predict
accurately.

RISK:
Be careful when you say that a project is DONE. A project is not DONE when
the coding has been completed. A project is DONE when:

2. The user has signed off a project closure document stating that the
functions agreed to have been provided and are working properly in the
intended environment (e.g. debugged in manufacturing - rather than at
your desk or in a lab).

2. Documentation and disaster recovery have been completed.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 9

www.kenfreed1.com

Example

After the requirements have been collected and the design completed, a project
in our area can be accurately estimated. The following example illustrates the
method:

 Coding: 10.0 months
 Debug at 20-30%: 2.5 months
 Admin at 15-20%: 1.5 months
 Documentation and disaster recovery at 5-10%: 0.5 months

 Project Total: 14.5 months

Note that we do not estimate effort for upfront requirements gathering and
design in advance. For rough planning purposes, this is about 40% of the coding
effort.

Coding: Is estimated figuring the AVERAGE PROGRAMMER'S experience and knowledge
level, unless the particular person working on it is known. It is estimated
figuring the programmer has only the coding to do, but no meetings, vacation,
education, admin, dept, etc. It is to be considered that the programmer will
take a few breaks during the day. It is NOT to be considered that the
programmer will work overtime during the coding phase (overtime is reserved for
the unanticipated/unforeseeable).

RISK:
Estimating a project you are familiar with as if you were doing it will
get you into trouble if you wind up not doing it. Document staffing
assumptions when giving "aggressive" estimates.

Debug: means debug in manufacturing and includes minor changes to enhance
usability, which were unforeseen during requirements gathering. Statistically,
debug takes an additional 20% over coding for "glasshouse" applications, and 30%
for person-computer-machine systems. Error handling code is expanded greatly
during debug (when errors you never dreamed of happening occur, and errors you
anticipated never happen).

In some areas debug is performed through the use of simulation and test
cases. In our area the most efficient use of time comes from making up a
debug plan which involves running test parts through the actual machine
(sometimes referred to as the "code and fix" model).

RISK:
Often, we are only allowed to do the bare minimum part of the debug plan
due to production needs. If this happens, make sure you issue a memo
stating that debug will be done concurrent with production. Without this,
I.S. will be blamed for holding up production should a bug arise that you
could not test for.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 10

www.kenfreed1.com

Admin: means coordination among programmers, training new people due to staffing
changes, project management and reporting.

RISK:
If management changes the staffing personnel, be sure to log the effort
bringing them up to speed under a separate ADMIN id for the project, in
order to retain the integrity of the project estimates.

Documentation: means software internals (programmers guide/design), software
externals (user's guide) and disaster recovery.

To reiterate:

It is the project leader's responsibility to collect requirements, design
and estimate the project. It is the project leaders responsibility to
point out how the project can be divided into pieces (so it can be
partitioned among multiple programmers).

It is management's responsibility to commit staffing to a project. Project
partitioning considerations aside, the TIMESPAN of a project depends on
the level of staffing.

RISK:
Do NOT consider the user's dates in the EFFORT ESTIMATE; however, show the
critical dates (e.g. delivery, PRS) on the schedule. It is up to
management to add more people to bring in a date. Do not let yourself be
browbeaten into reducing an estimate to make a date. You are likely to
work overtime to produce the original effort in a shorter period of time.

On the average, a full time programmer is available to work from 28 to 32 hours
a week (out of 40), for an availability of 0.7 to 0.8 out of a total of 1.0.
The other time is for vacation, education, department, admin, etc.

RISK:
Unless explicitly directed (and documented) by management, do not prepare
schedules assuming overtime will be worked. Overtime is reserved for the
unanticipated/unforeseeable.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 11

www.kenfreed1.com

For example, the timespan to do the above project with one half time programmer
is calculated as:

 14.5 months effort
 ------------------ = 36.2 months timespan
 0.4 availability
 with one half time programmer

This would be reflected in this programmer's personal planning chart,
e.g.:

 week1 week2 week3

 Admin, Education, Vacation 0.3 0.3 0.3

 Big Project 0.4 0.4 0.4 <==

 Widget Line Maintenance 0.1 0.1 0.1
 Project 2 0.2 0.2
 Project 3 0.2

 Total 1.0 1.0 1.0

The schedule for a small project might have to show the exact time where
vacation and education fall. These do not matter for a larger project because
they can be factored into the availability.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 12

www.kenfreed1.com

Project Tracking

There are three interrelated considerations during development:

1. Deliverables - how much of the needed function has been written

2. Effort - how much effort has been expended to date. Is the project within
cost?

3. Timespan - is the project on schedule?

To track a project, use the simplification:

Halfway through a project timewise, half of the estimated effort should
have been logged.

Less than half means the project is behind schedule.

More than half means the project is ahead of schedule.

At the present time, we report project statuses to management once per month
(through "Technical Measurement Reviews" to first and second line management),
and progress reports.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 13

www.kenfreed1.com

LIFE CYCLE PHASES

The following phases each represent a step in the development sequence.

The goals of project management documentation are stated in the introduction.
The programming professional has been empowered to create the amount of
documentation in the form they judge necessary to best fulfill these goals;
i.e.:

These phases can be combined or split as needed.

The items or work products within the phases can be rearranged.

If phases are combined, a rearrangement will make the documentation
more readable.

This guide attempts to define the minimal items/work products common to
all of our projects for good project management.

If an item is inapplicable, it should be stated as such (to avoid
having people ask why it's not there).

Items can be combined if it makes sense to do so.

e.g. - for smaller projects: combining the hardware and
software architectures into one diagram, combining the
requirements descriptions with the design descriptions.

Some project management environments are very structured. (e.g.: step by step
instructions, fill in the blanks forms, checklists).

The variety of projects we handle does not allow us to adhere to a
rigorously defined procedure without wasting time on some items. If an
item/work product not mentioned in this document should be done (to
fulfill the stated goals of project management), it is the programmer's
responsibility to foresee and add it.

e.g.: dividing design into high level design and low level design;
dividing test into high and low level testing.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 14

www.kenfreed1.com

Phase 0 (Analysis): Proposal and Requirements

1. Give a high level description of WHAT has to be done in software, without
going (too much) into HOW it will be done. Describe the machine/problem and
how software will fit in. Point out the applicable factors; e.g.:

a) Hardware
b) Vendor computer subsystem functions and dependencies
c) Server dependencies
d) State how many machines/installations there will be and where they will
 be located if known. Point out differences between machines if known.

2. Give the user's schedule. Point out:

a) Hardware availability
b) PRS (Production Run Start)
c) Qualification

3. Name the responsible programmers and engineers.

Names, departments, telephone numbers, email addresses.

4. Justification:

a) For a development project: defer to the user's original tool
justification.

b) For an enhancement project: restate the user's justification given on
the ECR (engineering change request) form.

5. State the AHT (Actual Hours Tracking) Project Id that future hours spent on
the project will be logged under.

Optionally:

6. Alternative Architectures:

If there are several different plausible ways of doing the project, lay
out the alternatives with pros and cons.

RISK:
Answering "why are you doing it this way?" questions can sidetrack you
later in the project. Try to head them off at this stage of the project.

7. Feasibility

Feasibility is done if some "up front" programming is needed in order to get a
feel for the complexity of the system, due to a lack of experience.

It is not a blank check to program with no end in site. The questions to be
answered should be listed, along with a reasonable approach for their resolution
(e.g. testbed development, writing of algorithms and stubs, experimenting with a
prototype machine).

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 15

www.kenfreed1.com

"Gut feeling" target dates should be shown.

RISK:
None of the software developed in feasibility is obligated to be used in
manufacturing on the floor. Make sure your users understand this.

Phase 1: Definition and Design

Non Formally Documented Project Management Items:

1. For development projects, a design review (before preparing the design
documentation) is usually constructive and worth the effort. It is advised
that this be done before a group of colleagues familiar with the type of
project underway, chosen by the programmer doing the work.

RISK:
While the programmer doing the work has the final say on how a project is
to be done, meeting minutes of the design review are recommended (to
record if significant issues were raised and what they were). This will
be valuable in case oversights or controversy arise later in the project.

2. Please note that it is not mandatory to include details of the Internal
Design documentation in the Project Management documentation, beyond a
Software Architecture Overview.

Software internal design documentation is not normally part of the formal
"commitments and schedules" aim of project management documentation. It is
part of what will eventually become the "Software Internals" (Programmers
Guide) technical documentation.

Formally Documented Project Management Items:

1. System Description

Outline how the system will work in a clear concise manner. Relevant
sections might be:

a) Hardware Architecture

Use a diagram to help describe the machine/problem and how software
will fit into it. Give a high level description of what has to be
done in software, as well as a high level description of how it will
be done.

i) Hardware

ii) Division of functions between lower level vendor computer
subsystems, hardware and our software.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 16

www.kenfreed1.com

iii) Server/MES system dependencies

b) Software Architecture

This will eventually become part of the Software Internals
documentation. Give an overview of what will not be apparent from
looking at the commenting found in the code; e.g.:

How the system fits together and relates to the hardware.

Timing considerations. Sequencing considerations.

Methodology for handling multiple product types, multiple machines.

c) Functional Description

Describe the steps the user will go through to run the system, as
related to the software.

2. Limitations

The best way to describe what will/won’t be done is to anticipate what the users
are most likely to want that they will NOT get and list it.

Provided the design allows it, some of the functions that the users are
not getting can be part of a follow-up enhancement/phase II of the
project.

RISK:
Keep the design open for future enhancement; but, try to keep development
projects as simple as possible and focused on what is critical for
production. Try to code and debug the system one step at a time, and delay
non critical sophistication as follow on features.

3. Technical Assumptions and Risk Assessment

a) Without "shooting yourself in the foot", list TECHNICAL assumptions which if
not true, will cause you to redo the design and/or do a lot more work.

e.g.: data volume assumptions, speed and timing limitations, mid cycle
state determination and restart, error recovery, startup/power up
assumptions, data transfer rates, server availability.

b) List things that the users didn't seem sure of, or that you had a difficult
time getting a consistent answer on.

4. User Ordered Data Processing Items

a) List the configuration of all equipment the user has to order (e.g.
materials for prototyping/debugging runs, facilities).

b) List all software the user has to order (e.g. Windows, Excel).

c) List all communications lines to the user has to run.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 17

www.kenfreed1.com

d) List all other Server/DP Center items (e.g. logons, installation of program
products) the user has to arrange for.

5. User Interface

a) What the operator and engineer will see when they go to use the function
being provided.

E.G.: screens, lights, buzzers, bells, barcode wands... The exact screen
layouts are not necessary, but a description of all of the major function
being provided is necessary.

Show how screen functions will be divided into a menuing scheme.

If applicable, point out real time vs. on demand update features.

b) Programmer/Engineer/Maintenance diagnostic and error logging features.

c) Data Security: if applicable, point out how passwording in the system works.
(e.g.: point out screens restricted to engineering).

If a tool is able to access sensitive data, it is mandatory to point out the
security protection mechanism (e.g. passwording, badge protection for the
room).

6. Features being provided that are not directly observable.

e.g.: control loops, logistical or product-process tracking database
correlation, non apparent real time features.

7. Signoff

Name the responsible programmers, engineers and involved managers. Have
them sign that they understand what we will do and (more importantly) not
do in this stage of the project.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 18

www.kenfreed1.com

Phase 2: Estimates and Scheduling

All estimates and schedules prior to this phase are for rough planning purposes
only and imply no commitment on anyone's part.

RISK:
It is common that you will be asked for an "off the cuff" estimate or
schedule in writing prior to this phase. Make sure you mark it as "Non
Commit Pre Requirements/Design Estimate" (any similar statement will do).
You are likely to encounter a lot of grief later if you don't make this
clear at that time. Do NOT commit to any estimate until the requirements
are agreed to in writing. Effort estimates tend to increase as
requirements and limitations are brought into focus.

1. Project Effort

Break the software down into items, tasks or functions and estimate each
one. If they are interrelated (not fully partitionable), it is OK to put
in some "system integration" (or putting it together) effort.

2. Schedule

a) Show critical dates, hardware availability needs and when what parts
of the project will get done.

b) Show staffing assumptions with names if possible.

c) Show how much machine time for debug is needed.

d) For one programmer projects - name the "Backup" programmer. If a
Backup Programmer cannot be named, document it.

See the "Project Closeout" phase for a description of the Backup
Programmer's responsibilities.

3. Scheduling Assumptions and Risks

E.G.: Hardware availability, staffing exposures, experience assumptions,
vendor subsystem delivery, data supply dependencies.

4. Signoff

a) The users should sign that they know what the I.S. committed dates
are, even if they want it sooner.

b) Management should sign that they agree to staff the project.

c) If involved, host system (e.g. data supply) management should sign
that they understand how the schedule depends on their piece.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 19

www.kenfreed1.com

Phase 3: Development

Non Documented Item:

On a larger project, reviewing the code with the backup programmer periodically
during development is highly recommended.

RISK:
If disagreements arise, the programmer who is responsible for making it
work has the final say in how things are to be done; however, document
minutes of the review if significant issues/concerns/disagreements are
raised. Add a hardcopy of this to the project file.

Documentation:

Once a month in our area a "Technical Measurements Review" is presented to first
and second line management, and a progress report is written for first line
management.

No formal documentation outside of that contained in the standard forms for
these reviews are needed during the development phase of the project.

Completing the necessary information for the Technical Measurements Review
presentation constitutes "tracking" the project to make sure it is within effort
estimates and on schedule.

The relevant sections of the "Project Profile" form presented in this meeting
are as follows:

1. Resource

The planned headcount is taken from the Phase 2 scheduling and expressed
in person-quarters:

There are 3 months per quarter

There are 4.3 (= 52/12) weeks per month

The actual headcount is taken from the AHT (Actual Hours Tracking) time
logged against the project.

Whether the project is behind or ahead of schedule, and by how much, is
based on the efforts to date and is calculated as follows:

 time since schedule started
PLANNED EFFORT to date = --------------------------- x total effort
 total timespan

ACTUAL EFFORT to date = total effort logged under AHT since schedule started

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 20

www.kenfreed1.com

As described earlier in this document, this is a simplification because it
does not include deliverables.

The most important things to the user are deliverables and schedule;
however, until the deliverables are done, quantifying how "done" they are
is very subjective (like rating how "done" an egg is before it is laid).
Typically, the first 90% of the deliverable is completed according to the
schedule and the remaining 10% overruns the schedule.

2. Problems

Problems involving scheduling, assumptions, etc. are reviewed.
Emails/memos which supplement verbal agreements impacting scheduling,
estimates and deliverables are reviewed.

Try to keep the technical nitty-gritty to a minimum. The essential issues
for second level management are what we are providing and when it will be
done.

3. Change Control

Changes in requirements which will impact the schedule are presented as
updates to the project management documentation.

Other changes to the schedule (e.g staffing, hardware delays) are
presented as updates to the project management documentation.

Reference how the users have been informed of these changes (e.g. signoff,
emails of whatever date, meeting minutes of whatever date, etc.).

Significant changes should have a signoff or other specific
acknowledgement by the user.

Phase 4: Debug

During the Debug Phase, the same project tracking documentation as was done
during development are produced for the monthly reviews, but in addition, a test
plan and user education plan are developed during this phase.

1. Test Plan

A test plan can be done prior to this phase, but (most of the time) the best
ideas of how the system should be tested will form after coding.

It is assumed that the user will test all screens for acceptable performance
with valid input, invalid input, no input, too much input, out of sequence
input, etc. It is also assumed that the system should handle communication
failures (e.g., unplugging a server cable or RS-232 line) in an acceptable
manner. These do not have to be documented.

Most of the time we are dependent on the users for "shaking down" the system.
An approach for testing the system should be documented. User dependencies
should be concentrated on when documenting a test plan.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 21

www.kenfreed1.com

At the least, this should be an agreement stating how much product of what
type should be run through the system before it can be said that the
system is running in a bug free manner.

Some user dependencies that might be relevant to testing a given system are:

A "gut" feeling of how much product of what types should go through the
system before it can be said it's working OK.

For Machine Control: If there are computer subsystems, how many power
down/ups (with the machine in what state) should be performed to make sure
the system recovers/comes up correctly.

How many times and at what stages mid cycle restart should be tested.

Test the timing/speed/product processing limitations of the system.

For Testers: How much product with known errors of what types should be
available to put through the machine.

Optionally:

2. Training Plan

Most of the time the user will not need any extra education, since they have
helped formulate the requirements for the system and they have done the
acceptance testing.

Occasionally there will exist a need for a training plan. This will be when
the system has a lot more function and room for error/confusion than the user is
acquainted with. This usually arises when an enhancement is done to a program
product and installed as part of the system. Part of this might include:

References to outside classroom training that the user should plan on
getting on the program product.

An outline of the training the programmer should provide so that the user
understands how the program product was tailored/altered/interfaced to the
system.

It is the engineering user's responsibility to write the operator
spec and to train the operators.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 22

www.kenfreed1.com

Phase 5: Project Closeout

System Documentation

Basically, there are three types of documents:

1. Externals (user) documentation

2. Internals (programmer) documentation: A list of the modules abd where
they “live” in the system (Daemons, dlls, manually invoked utilities,
cron invoked jobs). Relationships between the modules.

3. Disaster recovery documentation:

This can be combined with Internals. List the modules, where they are
stored and procedures for recreating the system software. Assume
familiarity with DOS, Windows, Unix, ftp, etc. List program product
ordering information.

Disaster Recovery

Upload non program product code to a host library so that the system can be
recreated; e.g.:

1. Source code

2. Accompanying MAKE files (if C language), resource files, etc.

3. Executable code or object modules if source code is not available.

Quality Code Definition:

1. Does the Job:

The user agrees that it performs the committed to function in a bug free
manner.

2. Maintainable:

A programming peer has reviewed the code and documentation and has agreed
to act as a support backup.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 23

www.kenfreed1.com

Project Closeout Document

These factors have been incorporated into the project closeout document, which
has the following items/work products:

1. User Signoff

Normally, users do not willingly sign anything. They fear if they sign,
nothing else will get done on the project. Point out that nothing else
outside of the original set of requirements will be done until they
signoff. Write down the common understanding to date of what has been
accomplished (e.g.: Phase 1 is done, Phase 2 is yet to go). If necessary,
make up a "laundry list" of items within the original scope yet to do,
append it to the signoff, and get the users to sign.

If there are no complications and the user agrees that everything has been
completed, this item can be skipped. Processing the department "Project
Closure Form" will be sufficient.

2. Code Review and Signoff by Backup Programmer OR

 Signoff by the department documentation and disaster recovery coordinator.

A "backup" programmer is named on projects staffed by a single programmer.

It is not necessary for a "backup" programmer to understand the code as if
they wrote it. It is necessary for the backup programmer to:

a) Know basically what the system does.

b) Be able to recreate the system from the source code.

c) Reinstall the system.

d) Be prepared to alter the source code, given a large enough learning
curve, should the need arise.

The backup programmer can therefore expect that a reasonable level
of coding structure, commenting and documentation be provided to aid
them.

3. AHT (Actual Hours Tracking) Summary

Prepare a chart showing the estimates for the project and the actual AHT hours
expended.

It's OK for discrepancies to exist. Put in some explanations.

e.g.: staffing changes, requirements changes, debug problems, hardware
changes, false assumptions.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 24

www.kenfreed1.com

SPECIAL PROBLEMS

 The following project management problems are listed in the approximate order
of their likelihood:

Not Enough Time to Work on the Project

Because the development programmers in our area also have unpredictable code
maintenance responsibilities, this will be the leading cause of I.S. delays.

It might arise that the project has fallen behind schedule and cannot get caught
up with the allocated staffing. This should be detected in the course of
preparing monthly tracking information. When this happens:

1. Meet with your manager and try to get some help; e.g.:

Someone to attend to the maintenance calls, so that your availability on
the project will go up.

Someone to help you code the project, if it is partitionable.

2. If you cannot get help, it will be necessary to reschedule the project
based on the actual staffing you have experienced. Document a new
schedule, review it with your manager, and call a meeting with the users to
explain it. Have them sign off that they understand the new schedule.

Note that understanding a new schedule does not mean they will like it or
accept it; but make sure they at least signoff that they have seen it.

RISK:
Do not depend on working a lot of overtime at the project end to make the
scheduled date. The earlier you can identify a scheduling exposure the
better.

Changing Requirements

Should the users insist on adding function which will impact the promised dates,
redo the applicable part of the project management documentation to describe the
new requirements, effort and new schedule, and have both the users and I.S.
management sign off.

11/22/91 Manufacturing and Embedded Tool Software Project Management Guide 25

www.kenfreed1.com

Hardware Delays

If these cannot be worked around, at least send out a memo stating there will be
an end date delay due to the hardware delay. Copy I.S. management and present
the memo as a problem at the monthly review.

Post Installation Support

RISK:
Train equipment maintenance on diagnosing hardware related problems. Try not to
accept calls from the operators after project closeout, or you will be forever
running out to the floor. Engineers should be the first line of support in
answering the "how does this work" questions. Equipment maintenance should be
the first line of support for hardware vs. software problems.

Managing Vendor Coders

If coding on the project is to be shared, clear dividing lines should exist in
the design to partition the function between organizations.

RISK:
Without this, there will be a lot of "finger pointing" during debug.

With shared maintenance responsibility, who updated the code last should be
clear.

